
www.manaraa.com

Enterprise Data Management in Research Organizations:
Data the Way You Want It

M. Brian Blake

Center for Advanced Aviation System Development
The MITRE Corporation (CAASD)

7515 Colshire Drive N420
McLean, VA 22102-7508

bblake@mitre.org

Department of Computer Science

Georgetown University
234 Reiss Science Building

Washington, DC 20057
blakeb@cs.georgetown.edu

ABSTRACT
 Raw data and processed information are essential to
organizations that perform operational analysis and build
simulation systems. In such domains, the dissemination and
management of this information is a daunting task. Not only
must this data support a heterogeneous array of researchers, but
also the requirements on this data are constantly changing. To
achieve maximum utility, data of this sort must be made
available in distributed locations and offered in various custom
formats. Such approaches as relational-to-XML, XML-XSL-
based custom formats, and web-accessible database reporting
tools offer some solutions for this domain. However, there are
some requirements that the current state of the art do not fulfill.
In this paper, there is a characterization of the state of the art for
this distributed data management domain and a discussion of the
current short-comings.
Categories & Subject Descriptors
H. Information Systems, H.3 Information Storage and Retrieval,
H3.4. System and Software
General Terms
Design, Languages
Keywords
Semi-structured Data, XML, XSLT, web-accessible databases

1. INTRODUCTION
 In some enterprise organizations, it is common that data is
shared across multiple underlying groups and teams. This is
especially true in organizations that perform analysis on
specialized domains, such as Air Traffic Management (ATM),
Command, Control and Communication (C3), Business Process
Modeling, and Neuroinformatics. At times, the analysis efforts
of multiple teams are interrelated and the same sets of data are
used for different computational tasks.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TAPIA’03, October 15–18, 2003, Atlanta, Georgia,
USA.Copyright 2003 ACM 1-58113-790-7/03/0010…$5.00.

A benefit to enterprises with respect to saving staff time is the
reuse of these common data sets. This reuse can be particularly
challenging when data is captured from domains in
heterogeneous formats. Compounding this problem is the fact
that internal analysis teams may adopt differing formats.

 An obvious solution for this problem is the insertion of some
universal data schemas and representations. Many technologists
think that the Extensible Markup Language (XML) is the
solution to the aforementioned challenges [19][20]. Other
technologies using XML for formatting and translation are the
Extensible Stylesheet Language (XSL) [23] and the Extensible
Stylesheet Language Transformations (XSLT). Also, many
relational database management systems (RDBMS) provide
reporting tools that can process data in formats acceptable to a
set of heterogeneous users. However, we have found that in
some simulation development domains, the current technologies
and tools for producing specialized formats are inadequate to
meet the current needs.

 The next section specifies the needs identified in
organizations, where tools are needed for advanced data
management and dissemination. The following section
discusses the underlying aspects of these needs and using a
survey of current technologies, including the previous work of
the author, shows what needs are currently not met. In Section
4, we discuss are current architecture work that supports this
domain and alleviates the aforementioned limitations.

2. DEFINING DATA MANAGEMENT
AND DISSEMINATION
 Researchers typically use simulation systems for both
design-time and real-time analysis. Both the raw data and
processed data must be shared at an enterprise level. In this
section, the requirements surrounding data management and
dissemination in this domain are discussed.

2.1 Data Management Requirements
 Although the underlying groups in these types of
organizations analyze different problems, the data to support the
investigations are typically the same. Also, software engineers
in these individual groups design and develop software
simulations that require the data in different formats (i.e.
specialized delimited text files, database format, XML [19],
etc.) Moreover, each group looks at different subsets of data
that may cross multiple data sources. The need for enterprise
data management is exemplified in the identification of two

www.manaraa.com

major problems. One problem discovered is that typically data
sources are acquired from external sources thus stored
independently without any connection to other possibly similar
data sources. A second problem is that groups, that use the same
information, duplicated their efforts in parsing data out of stored
formats to generate more acceptable formats.

The obvious solution is the incorporation of a relational
database management system (RDBMS). However, there are
several caveats. In some organizations, software
engineers/researchers that developed these simulations are not
regular database users and have no interest in becoming experts
in the latest RDBMS technologies. These researchers tend to be
domain specialists. In addition, the software
engineer/researchers are dispersed across decentralized sites
using heterogeneous operating environments. In these cases,
there is the need for a data management architecture that offers
distributed, user-friendly connectivity.

2.2 Data Dissemination Requirements
 Another set of problems surrounds the fact that software
simulations almost never use common formats like delimited
text, XML, or Microsoft Excel as input formats. The pre-
existing format requirements tend to be more cryptic and less
standardized. The reason for this is because earlier software
engineers tried to minimize parsing effort by creating input
formats to their software simulations that were closer to the
cryptic nature of the data as it is received. Such domains as
financial management and aviation information systems acquire
data from legacy mainframe systems. Ironically, in fact, the
data returned from conventional technologies can be too clean
to be accepted by most of the pre-existing simulations.
Moreover, researchers tend to have their own pre-processing
modules. These pre-processing modules further process the
initial raw data into more of a story that software simulations
can electronically enact. Finally, these simulations need initial
data that is the result of the integration of multiple data sources.
Data sets need to be generated where several layers of queries
are specified and the result set of one query could feed the input
of other queries.

2.3 Requirements for a Distributed Data
Management and Dissemination Domain
 In this work, the effort is toward an architecture (Specialized
Format Generation Architecture (SFG)) that alleviates both
needs for data management and for distributed data
dissemination. The requirements discussed in the previous
sections can be summarized in Table 1.

Table 1. Requirements of Distributed Data Management and
Dissemination Domains

1. Architecture must support the distributed dissemination of data.
2. Data sources need to be consistently stored and accessible.
3. Architecture support for specification-based data return

formatting (at times, from RDBMS).
4. Architecture must allow modules to be plugged in
5. Architecture must handle multiple interconnected queries while

returning the data as in (3)
The CAASD Repository System (CRS) [3] was previous work
that handled the first two requirements listed in Table 1. The
CRS is a framework developed by The MITRE Corporation to

store multiple sources of aviation data in a common relational
database. This framework is comprised of a relational database
management combined with a web-based user interface. The
CRS supports both the loading of data in the database in
addition to the ability to deliver data in certain pre-defined
formats. As it was initially designed, the requirements
alleviated by the CRS lie more in the data management aspects
of the architecture. The short-comings presented is this paper
has a focus on the specification-based dissemination
requirements not supported in the CRS and listed as 3,4, and 5
in Table 1. The requirements for this type of dissemination can
best be illustrated in a use case diagram [4] showing the high-
level functionality that such an architecture should be able to
achieve.

Analyst

Data
Repository
or RDBMS

External
Pre-

processor

External
Simulation
Software

Data-Set Specification

Format
Specification Interface Specification

 of External
Application

Specification of
Data Connections
and Interleaving

<< extends>>

<< extends>>

Data-Set
 Instance Generation

Generation Enactment
 and Webification

Manage External
Applications

<< uses>>

External Application
Connections

<< uses>>

<< uses>>

Specialized
Formatting

<< uses>>

 Figure 1. Use Case Diagram of Distributed Data Management
and Dissemination

The two major functionality requirements detailed in Figure 1
are the need for specifying data-set format and the actual
generation of data instances. The data specification is separated
into the specification of the format, how data-sets are connected,
and the relation of the data-set to external applications. The
generation functionality uses the aforementioned specification
information for producing and formatting web-accessible data-
sets. Each of the major functions must interact with some data
repository and external applications (i.e. pre-processors and
simulations). The work presented in this paper is toward an
architecture to fulfill these major requirements.

3. Related Work
 There is no shortage of research projects and industry tools
that provide approaches to meet the needs in this domain. In
this section, we scope the plethora of tools and techniques that
are available in this domain. It would be impractical to attempt
to present all the available tools in the scope of this paper,
however many representative tools and approaches are
discussed here. The two major areas related to this domain are
web-accessible database technologies and automated
architectures using XML and XSLT. Finally, based on

www.manaraa.com

represented tools and techniques, we discuss the group of
requirements not met in these current relevant technologies.

3.1 Characterizing the State of the Art
 With respect to all technologies surveyed, there is a natural
composite path that shows how all approaches fit into the
scheme of distributed database management and dissemination.
This composite path, with sub-paths that represent the various
existing technologies (as in Figure 2) shows the excessive
number of approaches that are considered part of this domain.

 In Path 1, data retrieved from a relational database is
represented back to the user in XML. Extracting XML from
relational formats is not new. Most RDBMSs currently support
the return of relational data in XML formats. One requirement,
however, is the creation of an XML schema (also referred to as
Document Type Definition (DTD) and more recently XML
Schema Definition language (XSD)) that conforms with
information that will be returned from the database. In addition,
there has to be a mapping from the database to this XML
schema. There are a number of other tools and research projects
that specialize in relational to XML mapping. One such tool,
XML Lightweight Extractor (XLE) [21], has a graphical user
interface allowing users to make mappings from an XML
document to a relational format using a mapping file called
DTDSA. XML-DBMS [22] is a middleware for transferring
data between XML documents and a RDBMS. Again, an XML-
based mapping language is used similar to that of DTDSA. In
Path 2, using XSL and applications for XSLT can be used to
translate XML documents into any format. This combination
of XML and XSL is a commonly accepted approach to the area
of data dissemination and specialized formatting generation.

 Technologies in Path 3 are toward web-accessible database
tools that allow for results reporting. One project, the SilkRoute
[8] of Fernandez [9], achieves both the web-accessible database
capabilities while delivering data in XML format. Other projects
do not particularly use XML/XSLT approaches. The Zelig
project introduces a schema that can be coupled with HTML to
control various CGI-based database executables [26]. In the
WebInTool [11][18], Hu specifies a web to database interface

building tool. This approach promotes the separation of
interface and source code. Hu uses several CGI-based modules
but similar to the ZELIG project, there is no automated query
building knowledge in these modules. The original work of the
authors in the CRS [3] is similar to the Zelig and WebInTool
projects. The major difference is that the architecture uses a
middleware of reconfigurable objects that can autonomously
build the relational query from user input. This approach
supports prior work toward the reconfiguration of software
architectures [1]. Similarly, Cooper [5] devises a middle-tier
architecture for data management called eXtensible Data
Management (XDM). This approach uses XML requests to a
component-based middle-tier to access multiple databases. The
main issue covered in this work is toward connecting multiple
databases.

 There are also industry tools that have rapid publishing of
relational databases on the web. Such tools as Oracle’s WebDB
[16] and Crystal Reports [6] allow developers to build graphical
user interfaces that construct formatted database reports.
Queries are built dynamically at design time, so forms must be
rebuilt when the schema changes. In Path 4 and 5a, there are
several projects that automate the integration of heterogeneous
formats, or any-to-any translations. This area is pertinent to
automating the connectivity of distributed applications as in
translating messages among on-line businesses (business-to-
business (B2B) interoperability). One product, the IBM
WebSphere Data Interchange [12], is an example of Path 4. The
TSIMMIS project [10] and Enosys Software [7] both integrate
applications with databases.

 Other related research projects, not represented in the Figure
2, explore how XML files can be queried. Research in this area
is definitely valid as more and more data is being represented in
XML. Leslie [15] explores technologies for querying and the
transformation of XML document types, and Petropoulos [17]
has interfaces for XML query enactment. However, they do not
connect to relational data models and have fairly specific
approaches to data transformations that may not be flexible
enough for the complex simulation formats.

R e la tiona l
D a tabase

M anagem en t
S ys tem

(R D B M S)

U n ive rsa l
F o rm a t
(X M L)

T ran s fo rm a tio n to
o th e r S pe c ia lized
F o rm ats (H T M L ,
E xce l, D e lim ited
T e x t, o th e r X M L)

E xte rna l P os t
P rocesso r o r

S im u la tion
A pp lica tion

(Legacy
A pp lica tion)

W e b B ro w se r

 W e b -B a se d
D isse m in a tio n

o f E xte rn a l
A p p lica tio n

R e su lts

W e b B ro w se r

5 b . S p e c if ica tio n -
D rive n In te g ra tio n o f

R D B M S a n d E xte rn a l
A p p lica tio n

1 . R e la tio n a l
M o d e l to X M L
T e ch n o lo g ie s

2 . X M L to o th e r S p e c if ie d
F o rm a ts (u s in g X S L T)

3 . W e b -A cce ss ib le D a ta b a se in S p e c ia lize d F o rm a ts
 (a lso re fe rre d to a s R e p o rtin g T o o ls)
 - A lso F e d e ra te d D a ta b a se s fro m m u ltip le d a ta so u rce s

5 a . W e b -E n a b le d
C u sto m F o rm a ts

d e live re d to E xte rn a l
A p p lica tio n(**N o t a lw a ys w ith W e b

In te rfa ce **)

A n y F o rm a t

4 . A ny-to -A ny T rans la to rs

Figure 2.. Main Distributed Data Management and Dissemination Path and Subpaths

www.manaraa.com

3.2 Limitations in Leading Related Work
One path not discussed in the earlier section is Path 5b. There is
not one tool or technology that manages all three main
requirements as illustrated in Path 5b. Those requirements are
listed below.
1. Specification of relational data (formatting) and automated web
interfaces for the entry user constraints

2. Managing the transfer of resultant data into external applications

3. Presenting the resulting database information or external application
output within a web form.

Either a combination of Path 1 and 2 or solely Path 3 can be
extended to handle this functionality. However, there are
problems that make these approaches inadequate. The
combination of Path 1 and Path 2 is the extensible solution,
because the XML resulting from Path 1 can be translated into
various future formats easily using XSL (Path 2). However,
there would be greater performance overhead in the XML/XSL
solution than the single technologies of Path 3, particularly for
large files. This is mainly because the information must be
generated twice, first in XML format, then in the final format. In
addition, this combination solution does not inherently support
web-published results. Reporting tools, as in Path 3, have the
functionality to query the database and generate the destination
files simultaneously. However, a problem with web-based
reporting tools are their inadequacy in producing extremely
cryptic formats with complex relational query interleaving. The
focus of these applications are to present table information and
statistics from relational data. In addition, the tools use
proprietary languages that limit their extensibility. Also,
technologies in Path 4 do not directly support the needs defined
in this domain. These tools more generally operate on multiple
databases or federated data sources. These technologies are
excellent for integrating data, but do not particularly support the
requirements in this domain to present resulting data to the user.
Other problems with the above approaches are the need for in-
depth XSL knowledge, which is not the reality in traditional
research organizations where non-computer specialists are
focused on other more operational knowledge.

4. SPECIALIZED FORMAT
GENERATION
 The Specialized Format Generation architecture (SFG) and
supporting specification language, Specialized Format Markup
Language (SFML), were devised to handle the requirements
illustrated in Figure 1 and needs discussed in Section 3.2. The
SFG architecture extends technologies used in the CRS
approach. Consequently, a major goal is to promote the
separation of the interface and the software implementation. In
order to support this separation, we promote a specification-
driven approach. The two major contributions of this approach
are the SFML language and the underlying SFG component.
We created one language, SFML, to specify all four concerns of
interface specification, query specification, results formatting,
and external application connectivity. The SFG component uses
a recursive, object-oriented design to manage the enactment of
the operations specified in SFML.

This section continues with an overview of the SFG
architecture. In following sub-sections, there is a description of

the semantics of SFML. We show how these semantics can be
used for the four aforementioned concerns. In the concluding
sub-sections, we show a screen-shot of the SFG graphical user
interface and how that interface is used to create SFML.

4.1 SFG Overview
 The first step in the operational flow the SFG approach is the
generation of a user-specific SFML file. Expert users should be
able to construct this file manually. However, most of the users
(non-developers) will use a tool that handles the database
specific aspects which will be discussed in Section 4.4. In this
case, the user would access a local SFML builder tool that
connects to the database and allows the user to build a file based
on the user’s domain-specific data and the database schema and
fields. The system provides an interface where SFML files can
be uploaded to a common repository. Users can then access this
file. The new system incorporates an XSLT component that
converts the file into a HTML web interface. During this
conversion process, the web interface that is dynamically
generated includes specific retrieval templates. These templates
allow the user to enter additional information that can be used to
constrain the database results. The SFG architecture allows for
the interleaving of database queries to produce the specialized
output. Moreover, the output can be provided to the standard
input of the user-specified external applications or post-
processors. The final data is returned to the browser. If no
external application is specified, the specialized output is
directly written to users’ client or to a user-specified file
location.

4.2 SFML Overview
 The main purpose of the SFML file format, from a user’s
perspective, is to specify how they want their database query
results to appear. These files typically resemble the formats that
are acceptable as input to software simulations used in analysis.
SFML uses the concept that users will specify their format using
a list of unique lines, similar to the return of rows when
querying a relational database. As such, these unique lines can
be described in terms of database row returns. Therefore, the
SFML files connect output formatting instructions to database
returns. In most database queries supporting simulation
software, there is some base filter that constrains the query by
such qualifiers (or dimensions) as quantity, time, or location. In
SFML, this base case represents the main line. This main line is
the foundation for the output file. Other lines can be derivatives
of this main line. Derivative lines can develop new queries
based on data returns from the query represented in the main
line. In addition, derivative lines can get information directly
from main line’s information. However, multiple main (peer-
level) lines can be specified. In each line, there is a
specification of where the output will go. Line information can
be presented in the users’ browser, to a file, or to multiple files
as specified in the SFML. This is helpful in building multiple
output files from one SFML file and web interface.

 Lines are represented as a set of line elements. A Line
element is mapped to a specific column that is returned at the
completion of a query. Special formatting can be applied to line
elements. For example, a line element can specify if there is a
trailing space. Also, line elements can specify the case of the
characters. An example of line and line elements is shown in

www.manaraa.com

Figure 4. This example shows how a unique line of data such as
“Employee Information” can be separated into four data fields.
These data fields are sequenced as line elements.

L in e E le m e n t

E xa m p le : L a s t N a m e , F irs t N a m e , E m p lo ye e ID , T itle

L in e

Figure 4. Line and Line Elements.

4.3 SFML Schema
A pseudo-XML schema (an XML file with descriptive
schema information) based on the SFML file is depicted
in Table 2. The top-level XML element is the
SpecFormatFile tag (Line 1). The SpecFormatFile
element has a name attribute that represents the name of
the specialized format that is being generated. At times,
this name is similar to that of the data source. Another
attribute, PostProcessorCodeName, is the name of the
external application or post processor module, if
applicable. The SpecFormatFile has one element that can
have multiple occurrences. This element is represented
by the Line tag (Line 2). The Line element has five
attributes, id, number, constraintOnId, and filename. The
id and number attributes give unique identification and
sequencing for the line (Line 3). The type attribute
specifies whether this line is a main line or a derivative
line. The type is represented by integer values 1 and 2,
respectively for main and derivative (Line 3) lines. If
this line is a derivative line, then the constraintOnId
attribute contains the id of its main line. Finally, the
filename attribute identifies where the output for the line
will be printed. This tag usually contains a file name,
however if “toScreen” is printed as the value then the
SFG architecture knows to send the output to the user’s
browser.

The Line element contains three sub-elements. Those
sub-elements are Query, NumberOfElements, and
Element. The Query element represents the actual SQL
query string in the QueryString element (Line 5). The
QueryConstraint element describes how this query can be
further constrained by another query. Typically a query
is constrained in the where clause by some column being
equated to a particular literal value. This element
describes the local database column to constrain
(table_name and local_name attributes) (Lines 7 and 8)
and from what line and column the information comes
from (QueryConstraint element value). In addition, the
format attribute describes if this literal value is a string or
number. Finally, the type (Line 6) attribute tells if this
filter/constraint should be attached by an AND or by an
OR.

Another sub-element of the Line element is the
NumberOfElements element (Line 10). This element gives
the number of elements that will be included for the line.
The final sub-element of Line is the Element or “Line
Element” element (Line 11). This element describes each
data string contained in the line and maps the value back
to information that should have been received from the
aforementioned query. Typically, fields specified in the
Select clause of the query are used to satisfy the
information constraint on these “Line Elements”. This
information is captured in the DBTable and DBField sub-
elements (Line 12 and 13). The Type specifies if the
returned data needs to be formatted as a string or number.
The StaticValue element allows researchers to put in a
value that stays the same and not connected to any
database returns. In building the architecture, we
recognized the need to tie in special methods and
algorithms. The SpecialTransform element is used to
specify special formatting features such as changing time
or date formats.

Table 2. SFML File with Inserted Schema Information

1. <SpecFormatFile name="DataSFGName” postProcessor =
“PostProcessorCodeName”>

2. <Line id="1A" number="1" type="1" constraintOnID="None"
3. filename=” OutputFileName">
4. <Query>
5. <QueryString> Query String </QueryString>
6. <QueryConstraint format="number" type = "and"
7. table_name="DBTableName"
8. local_name="FieldName">

ConstrainedFieldName </QueryConstraint>
9. </Query>
10. <NumberOfElements>TotalElements</NumberOfElements>
11. <Element number="Sequence_Number">
12. <DBTable/>
13. <DBField/>
14. <StaticValue/>
15. <Type/>
16. <SpecialTransform/>
17. </Element>
18. </Line>
19. </SpecFormatFile>

4.4 How SFML Incorporates Four Concerns
into One Language
As stated earlier, an innovation of SFML is the ability to
combine several concerns into one language. Other
related approaches separate these concerns into multiple
specifications. These related approaches are extensible
but impractical in domains where users are not familiar
with these languages. In such domains as the MITRE
domain, it is more practical to limit the number of
technologies that users must adopt. One commonly-
adopted approach, using an XML/XSLT, is illustrated in
Figure 5. This approach requires users to develop
technologies and learn languages in 4 distinct areas. For
the first concern (1), there must be a method by which a

www.manaraa.com

user-specific parameter form must be created for a
particular scenario. There are a number of technologies
that offer programmatic support, such as Java Servlets,
Java Server Pages (JSP), Active Server Pages (ASP)
[13][14]. that allow the creation of such forms. However,
these approaches are not evolvable solutions. It is
impractical to use these approaches to develop a new
form each time a new scenario is conceptualized. Using
SFML and XSLT, we have created an evolvable
approach, which will be discussed in greater detail in the
following section.

Relational
Database

XML
Specificati

on
Specialized

Format
External

Application

XSL
Specification

1. Web User-
Interface

2.

3.

4.

Figure 5. Four Concerns with SFML.

The second and third concerns (2 and 3) require users to
develop a XML schema (DTD or XSD) that is general
enough support enterprise-wide relational database
retrieval. In addition, a number of specific XSL
specifications must be created to support multiple
scenario-specific formatting. Consequently, there is some
difficulty in creating an XML schema that is general
enough to support the differing needs at an enterprise
level. Also, as discovered in the MITRE-CAASD domain,
XSL was determined to be a difficult language for the
users to learn. Moreover, there are no XSL tools with
graphical support for specifying the transformation, as
known by the author. The final concern (4) is a
specification for the manipulation of the results so that
they can be provided to external applications or presented
back to the user in their browser. Concerns 2, 3, and 4 can
be supported inherently with the semantics of the SFML
language. Query specification, interleaving, results
formatting, and external application integration can all be
specified in the language. The SFG component combined
with the initial CRS architecture handles the webification
of these processes.

Figure 6. SFML Generation Tool.

www.manaraa.com

4.5 The SFML Graphical User Interface
 For experienced users, the SFML format can be generated
manually and uploaded to the system. Since the SFML
language is relatively involved, it can be generated using a
graphical tool. This client-side application, as shown in Figure
6, was developed to prevent human error by automating the
construction and upload of the SFML files. The first screen (top
left) allows users to choose to create a new form, edit an
existing form or run a test report. The test report feature is
subset of the functionality available on the server-side. This
sample report shows a sample expected output format. The next
two screens directly below the aforementioned screen allow the
user to specify the number of unique files, sections, and lines.
The final screen on the right is where the user connects
formatting instructions with the database tables and columns.
Since this application connects directly to the database, the user
is dynamically provided with the available columns. An
additional benefit is that administrators of the database can limit
the users by restricting table access. This will help assure users
access the correct tables. The applet uses internal query-
building components as created by the initial CRS application.
In this way, the user specifies the desired columns, and the
system automatically creates the query constraints required for
table joins. The final SFML file can be tested, edited, and
uploaded to the system.

5. AN APPLICATION OF SFG/SFML
To demonstrate and validate the effectiveness of the SFG
approach, we show an operational usage of the system.
The Total Airspace and Airport Modeler (TAAM) is a
simulation modeling tool for airspace and airport
environments. One input to the TAAM simulation is the
flight traffic file. When airplanes fly from one airport to
another, air traffic management messages and radar data

is stored in a set of database tables produced from the
Enhanced Traffic Management System (ETMS). The
information is stored on the basis of individual flights.
The database model for the ETMS data relevant to the
TAAM simulation is illustrated in Figure 7a. For each
flight record, there is ETMS-specific information about
the messages passed to that flight. TAAM traffic files
must first query the flight table then use the flight id to
access information in other tables. This information must
be returned in the specialized TAAM format (as
represented in Figure 7b). A small subset of the TAAM
SFML file is shown in Figure 8.

 In the consideration of space, a full description of the
mapping from SFML file (Table 3) to the output file
(Figure 7b) is not possible. However, the subset of these
files should show the ability of the SFG to handle
complex simulation input files with multiple interleaved
queries. One example, Line 2A receives flight
information from the query in Line 1A as designated by
the constraintOnID tag. Therefore, for every unique
flight determined in Line 1A (Flight Table), there will be
a new tracking data record for that flight as specified in
Line 2A (ETMSCommon Table). Similarly, for each of
the tracking data records generated in 2A, Line 3A is used
to determine the current altitude (ETMSFZ). Another
action from this SFML File (not depicted in Table 3) is
that for each tracking record, a routing information record
is extracted (ETMSRT). Finally for each routing record
(ETMSRT), there is a list of waypoints (latitude/longitude
points) records generated related to points through which
the plane has flown (RTWayPoint).

Figure 7a. Flight-Based Relational Model Figure 7b. TAAM Input File Format

ETMSCommon

msgID
flightID
msgDate
SeqNo
GMTTimeStamp
msgType
Carrier
FlightNo
FaciiltyID

Flight

flightID
carrier
deptAirport
deptDate
arrAirport
arrDate
equip

ETMSRT

msgID
arrFix
deptDay
estDeptTime
ctrldeptTime
estarrTime
wayPoinrCount
FixCount
deptAirport
ArrAirport
msgcode
Route

RTWayPoint

msgID
RtWaypointID
Waypoint

RTFix

msgID
RtFixID
Fix

RTCenter

msgID
RtCenterID
Center

FixView

waypointID
latitude
longitude

TAAMAirport

airportCode
deptCode
arrCode

ETMSFZ

msgID
equip
equipType
speed
altitude

{
AAH481 B737 1 KSNA-PHNL-1 ? 1,18:07 2,00:13 0 0 S
@SID ? ?
@STAR ? ?
@A KSNA
KSNA ?
@W SXC
SXC ?
@W DOYLE
DOYLE ?
@W EXERT
EXERT ?
@W VTU
VTU ?
@W DEANO
DEANO ?
@W ZIQOR
ZIQOR ?
@W RZS
RZS ?
@W DINTY
DINTY ?
@A PHNL
PHNL ?
}

www.manaraa.com

Table 3. Raw SFML File for TAAM Application
<SpecFormatFile name = "TAAM">
<Line id = "1A" number = "1" type = "1" fileName = "TimeTable">
<Query>
<QueryString>SELECT DISTINCT flight.flightid, flight.carrier, flight.flightno, flight.deptairport, flight.arrairport FROM flight</QueryString>
</Query>
 <NumberOfElements>1</NumberOfElements>
</Line>
<Line id = "2A" number = "2" type = "2" constraintOnID="1A" fileName = "TimeTable">
<Query>
<QueryString> SELECT DISTINCT flight.flightno,dept.icaocode deptcode, arr.icaocode arrcode, flight.deptdate, flight.arrdate,
flight.flightid, flight.carrier, flight.equip, etmscommon.msgid, ROWNUM FROM etmscommon,etmsrt, flight, taamairport arr, taamairport
dept WHERE etmscommon.msgid = etmsrt.msgid and flight.flightid = etmscommon.flightID and flight.deptairport = dept.airportcode and
flight.arrairport = arr.airportcode and ROWNUM = 1</QueryString>
<QueryConstraint format = "number" type = "and" table_name = "Etmscommon" local_name = "flightId">flightId</QueryConstraint>
</Query>
 <NumberOfElements>8</NumberOfElements>
<Element number = "1">
 <DBTable>Empty</DBTable>
 <DBField>Empty</DBField>
 <StaticValue> {</StaticValue>
 <Type>String</Type>
 <SpecialTransform>LINEBREAK</SpecialTransform>
 </Element>
<Element number = "2">
 <DBTable>Flight</DBTable>
 <DBField>Carrier</DBField>
 <StaticValue>Empty</StaticValue>
 <Type>String</Type>
 <SpecialTransform>NOSPACE</SpecialTransform>
</Element>
<Element number = "3">
 <DBTable>Flight</DBTable>
 <DBField>FlightNo</DBField>
 <StaticValue>Empty</StaticValue>
 <Type>String</Type>
 <SpecialTransform>Regular</SpecialTransform>
</Element>
*** 5 OTHER LINE ELEMENTS ****
</Line>
<Line id = "3A" number = "3" type = "2" constraintOnID="2A" fileName = "TimeTable">
<Query>
<QueryString> SELECT altitude FROM etmsfz,etmscommon, flight WHERE etmscommon.msgid = etmsfz.msgid(+) and flight.flightid =
etmscommon.flightID and ROWNUM = 1</QueryString>
<QueryConstraint format = "number" type = "and" table_name = "Etmscommon" local_name = "flightId">flightId</QueryConstraint>
</Query>
 <Element number = "1">
 <DBTable>EtmsFz</DBTable>
 <DBField>Altitude</DBField>
 <StaticValue>0</StaticValue>
 <Type>String</Type>
 <SpecialTransform>DEFAULT</SpecialTransform>
 </Element>
</Line>
*** 4 OTHER INTER-RELATED LINES *****

www.manaraa.com

 This SFML file for TAAM Traffic files demonstrates
the ability for the SFG implementation to support five
levels of chained queries. Information is shared among
lines from multiple levels. The method for chaining
queries is similar to sub-queries in SQL. As such, these
queries have far less overhead than making joins on the
tables, especially in cases when small amounts of
information are needed. Also in the TAAM specification,
the main-line is mainly for information purposes where
resultant information is used in sub-lines and printed as
values in the sub-lines. This is important when there is a
need for auxiliary information. For TAAM, all
information is printed to files as opposed to streaming the
information into the simulation. However, lines are sent
to multiple files. In fact, three different files are generated
from one TAAM SFML file. Finally, this file inserts a
great deal of static information that is necessary as
instructions to the TAAM simulation. Static text, such as
“@A” and “@W”, are embedded as necessary for TAAM
operation.

6. DISCUSSION
In this paper, we introduce a new architecture for
distributed database dissemination, particularly that data
that is retrieved from a relational database. This new
SFG architecture served as an enhancement to the initial
work of the CAASD Repository System (CRS). We
discussed the implementation of this architecture using
web-based technologies and the XML-based, SFML.
Through a survey and comparison of existing work, we
showed how the requirements of this dissemination
domain are not currently met in related projects and tools.
Existing research projects and tools only achieve partial
support (i.e. XML transformation, relational-to-XML
transformation, or database reporting, but not all three).
This implementation has been highly successful in
supporting software simulation input files that can be
derived from database information but have cryptic
formats. In this paper, we evaluate this architecture and
implementation by integrating it in the TAAM domain.

 We have highlighted the benefits of using one file to
specify multiple concerns. In this domain, one
centralized file is logistically easier to handle. There is
only one specification language to learn and one file to
store and manage per project. In addition, using an
XML-based approach greatly enhances the readability
and presentation of the specification. Moreover, web
interfaces can be dynamically generated by transforming
the SFML specification using general XSL technologies.

 In the five teams that use SFG at the MITRE
Corporation, processed files are typically no more than
five megabytes, in size. The SFG easily produces these
files in less than 10 minutes for up to five levels of
chained queries. The users were extremely pleased with

this performance. Most projects initially were
accustomed to manually running queries and using
several cumbersome scripts that relied on human
intervention. Several projects have stated that they have
become more efficient and thorough now that the
preparation effort has been greatly decreased.

 There are several limitations and many areas of future
work discovered. One area is for future performance.
Though the current performance of the SFG component is
acceptable to the five teams that are currently supported,
if this approach is used to build files 100 times the current
sizes with more chained queries, performance can indeed
become an issue. Since each returned row is formatted
independently and sequentially, future work may consist
of a more parallel processing approach. In addition to
performance issues, there is the issue of extending the
architecture for additional formatting features
(SpecialTransforms). In the current approaches of
XML/XSL, XSL is a more powerful formatting language.
A major limitation of SFG is new formatting
requirements require additional components to be added
to assist the Line Element generation. On-going work on
SFML is toward the extension of the schema to address
newly discovered file format constraints. As these
extensions are made, we are attempting to reuse
formatting functionality currently available as opposed to
writing new code. Another limitation is that the SFG is a
“one-pass” process, while XML/XSL is “multi-pass”.
Since SFG queries and formats simultaneously, there is
no opportunity to develop statistics over the entire file. A
resulting limitation is deleting redundant records or
giving a count of specific record types. Though these
functions can be easily added, it would require additional
software to be created. With multi-pass approaches, this
type of enhancement is easier since formatting occurs
once the entire file is created.

7. CONCLUSION
 The SFG architecture has been undoubtedly useful in
the area of distributed data management and
dissemination, particular as shown in one research
organization. In particular, the SFG approaches have
greatly enhanced the initial CRS tools and techniques.
One area of future work is the investigation of using
SFG/SFML for data retrieval, dissemination, and
formatting from multiple data sets as in the well-
established area of federated databases. Such future work
would necessitate the creation of a data source
specification in the SFML specification and the
supporting software in the SFG components. Another
area of future work is toward enhancing the system into
domains such as business process management and bio-
informatics.

www.manaraa.com

8. ACKNOWLEDGMENTS
Many thanks to my colleagues at the Center for Advanced
Aviation System Development at The MITRE
Corporation. This is the copyright work of the MITRE
Corporation and was produced for the U.S. Government
under Contract Number DTFA01-93-C-00001 and is
subject to Federal Acquisition Regulation Clause 52.227-
14, Rights in Data-General,Alt. III (JUN 1987) and Alt.
IV (JUN 1987). The contents of this document reflect the
views of the authors and The MITRE Corporation.
Neither the Federal Aviation Administration nor the
Department of Transportation makes any warranty or
guarantee,expressed or implied, concerning the content or
accuracy of these views.

REFERENCES
[1] Allen, R.J., Douence, R. and Garlan, D., “Specifying and

Analyzing Dynamic Software Architectures,” Proceedings
of the 1998 Conference on Fundamental Approaches to
Software Engineering (FASE98), March 1998

[2] Blake, M.B., “A Specification-Driven Architecture to
Support Distributed Database Dissemination in Custom
Formats” (under review)

[3] Blake, M.B., Hamilton, G., and Hoyt, J. “Using
Component-Based Development and Web Technologies to
Support a Distributed Data Management System”, Annals
of Software Engineering , Vol. 13, No. 1, pp.13-34, April
2002, Kluwer Academic Publishers

[4] Booch, G., Rumbaugh, J., Jacobsen, I., "The Unified
Modeling Language User Guide", Addison Wesley,
Reading MA, 1998

[5] Cooper, B.F., Sample, N., Franklin, M.J., Olshansky, J.,
Shadmon, M., and Cohen, L., “Extensible Data
Management in the Middle-Tier,” In Proceedings of the
12th International Workshop on Research Issues in Data
Engineering (RIDE’02), IEEE Computer Society Press,
San Jose, California 2002

[6] Crystal Reports (2002)
http://www.crystaldecisions.com/products/crystalreports/

[7] Enosys Software, http://www.enosyssoftware.com/

[8] Fernandez ,M., Morishima , A. , Suciu ,D., Tan ,W.,
“Publishing Relational Data in XML: The SilkRoute
Approach”, IEEE Data Engineering Bulletin , no. 24(2) ,
pp. 12--19 , 2001

[9] Fernandez, M., Simeon, J., Wadler, P., “A Semi-monad for
Semi-structured Data” Proceedings of the International
Conference on Database Theory, London, UK 2001

[10] Hammer, J., Garcia-Molina, H., Ireland, K.,
Papakonstantinou, Y., Ullman, J., and Widom, J.,
“Information Translation, Mediation, and Mosaic-Based
Browsing in the TSIMMIS Project” In Exhibits Program of
the Proceedings of the ACM SIGMOD International
Conference on Management of Data, page 483, San Jose,
California, June 1995

[11] Hu, J., D. Nicholson, C. Mungall, A.L. Hillyard, A.L.
Archibald, “ WebInTool: A Generic Web to Database
Interface Building Tool,” In Proceedings of the 7th
International Conference and Workshop on Database and
Expert System Applications (DEXA96), IEEE Computer
Society Press, Zurich, Switzerland, 1996

[12] IBM WebSphere Data Interchange, http://www-
3.ibm.com/software/integration/appconn/wdi/

[13] JAVA SERVER PAGES (2003),
http://java.sun.com/products/jsp/

[14] JAVA SERVLETS (2003),
http://java.sun.com/products/servlet/

[15] Leslie, D.M.,”Transforming documentation from the XML
doctypes used for the apache website to DITA” Annual
ACM Conference on Systems Documentation /ACM Press,
Sante Fe, NM 2001

[16] Oracle Corporation (2002), WebDB Application 3.0
http://oradoc.photo.net/ora816/webdb.816/a77075/basics.ht
m

[17] Petropoulos, M., Vassalos, V., Papakonstantinou, Y.,”XML
Query Forms(XQForms): Declarative Specification of
XML Query Interfaces”, Proceedings of the 10th
Conference on the WWW, Hong Kong, 2001

[18] WebInTool(2002),
http://www.ri.bbsrc.ac.uk/webintool.html

[19] Weiss, A. “XML gets down to Business,” Networker3,3 pp
36-37, September 1999

[20] XML (2002), http://www.w3.org/XML/

[21] XML Light Weight Extractor (XLE) (2002)
http://www.alphaworks.ibm.com/tech/xle

[22] XMLDBMS (2002), http://www.rpbourret.com/xmldbms/

[23] XSLT (2002), http://www.w3.org/TR/xslt

